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Abstract—This paper is concerned with analyzing heat conduction in rigid shell-like bodies. The
thermal equations of the theory of a Cosserat surface are used to calculate the average (through-
the-thickness) temperature and temperature gradient directly, without resorting to integration of
three-dimensional results. Specific attention is focused on a conical shell. The conical shell is
particularly interesting because it has a converging geometry, so that the shell near its tip is “thick™
cven though the shell near its base may be “thin”. Generalized constitutive equations are developed
here in a consistent manner which include certain geometrical features of shells. These equations
are tested by considering a number of problems of plates, circular cylindrical shells and spherical
shells, and comparing the results with exact solutions. In all cases, satisfactory results are predicted
even in the thick-shell limit. Finally, a problem of transient heat conduction in a conical shell is
solved. It is shown that the thermal bending moment produced by the average temperature gradient
is quite severe near the tip, and it attains its maximum value in a relatively short time

1. INTRODUCTION

Most aerospace structures are compositions of structural components which can be
modeled as shell-like bodies. For various reasons, it is desirable to determine the
thermomechanical response of these shell-like bodies to thermal and mechanical loads.
Within the context of classical linear shell theory, the temperature distribution influences
the mechanical response of the shell through the resultant thermal force and resultant
thermal moment. For an elastic shell, the thermal force is related to the average (through-
the-thickness) temperature and the thermal moment is related to the average temperature
gradient by constitutive equations.

Often (when the strain rates are small and the heat flux vector is independent of
strain), the thermal and mechanical problems are uncoupled in the sense that the
temperature field may be determined by solving equations for a rigid heat conductor. Then
the resulting temperature field may be used to calculate the thermal force and thermal
moment which provide thermal loading for the determination of the deformation of the
shell.

In this paper, we confine attention to the determination of the temperature distribution
in a shell-like body which is treated as a rigid heat conductor. Although the temperature
distribution can be determined by attempting to solve the three-dimensional heat conduction
equation, this approach has two major disadvantages. First, since the thermal loads for
shell theory depend only on the average temperature and temperature gradient, much of
the details calculated by this approach are not of prime importance. Second, since the
heat conduction equation admits separable solutions only for a limited number of
geometries, it is exceedingly difficult to obtain analytical solutions for many typical shell
geometries. This latter problem has been addressed in [1], where equations are developed
to calculate an approximate temperature distribution in shells of revolution.

Here we take a different approach and use thermal equations for shells which have
been developed|2, 3] to predict the average temperature and temperature gradient directly,
without resorting to integration of three-dimensional results. The most recent of these
developments[3} is based on modeling the shell-like body as a Cosserat surface. Details of
this theory may be found in [3, 4). Specifically, the objective of this paper is to
determine the average temperature and temperature gradient in a conical shell (Fig. 1)
which is a basic aerospace structure. The conical shell is particularly interesting because it
has a converging geometry, so that the shell near its tip is necessarily “thick” even though
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Fig. 1. Conical shell of constant thickness A, tip radius R, and base radius R,.

the shell near its base may be “thin”. For this reason, it is questionable whether any shell
theory can accurately predict results for the critical tip region. Here it is shown that with
appropriate constitutive equations, the Cosserat theory includes enough of the geometry
of the shell to predict relatively accurate results for the conical shell.

It should be emphasized that it is not a trivial matter to develop equations for shells
which produce reasonable results in the thick-shell limit. For example, we recall that the
equations in [1] were developed by writing the heat conduction equation in a form
appropriate for shells and then neglecting quantities multiplied by higher powers of the
ratio of the thickness to radius of curvature. Even though these equations are more
complicated than the Cosserat equations in that details of the through-the-thickness
temperature distribution are calculated, too much of the shell geometry has been neglected,
so that they predict inaccurate results in the thick-shell limit. The predictions of the
equations in {1] are compared with the more accurate predictions of the Cosserat theory
for the thick-shell problems considered in Sections 4 and 5.

In the following sections, we discuss the basic equations of the Cosserat theory and
then solve a number of problems. To develop confidence in the predictions of the Cosserat
theory in the base region of the conical shell, we solve various problems for a plate and
compare with exact solutions in [S]. These problems examine the effect of the three types
of boundary conditions on the major surfaces of the plate: specified heat flux, specified
temperature and radiation. Next, to develop confidence in the predictions of the theory in
the tip region of the conical shell, we use the same equations to solve specific problems for
a solid circular cylinder and a solid sphere, and compare the results with exact solutions.
Finally, after having developed confidence in the predictions of the theory in both the tip
and base regions of the conical shell, we solve a specific heat conduction problem for a
conical shell.

2. BASIC EQUATIONS

Let the material points of the Cosserat surface C be identified by means of a system
of convected coordinates 6% (@ = 1, 2) and let the two-dimensional region of space occupied
by the material surface in the present configuration at time ¢ be denoted by c¢. Further, let
the vector-valued function r define the position of a material point of the surface C and
at each such point define the vector valued function d, called the director, and the two
temperature fields 8 and ¢, each referred to the present configuration. Then a thermo-
mechanical process of the Cosserat surface is defined by

r=r(6*, 1), d = d(6~, 1), [a,a.d] > 0, (2.1a,b,¢)

=069, 6 >0), o= o6, 1), (2.1d,e,f)
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where the tangent vectors a, and the unit normal vector a, are defined by

a, = a%?’ 8,8;=0, ay'a;=1 a'’=[a,2,8]>0, (22a,b,c,d)
and the condition (2.1c) ensures that the director is nowhere tangent to c¢. Also, in the
above, 0 represents the average (through-the-thickness) temperature in the shell, and ¢
represents the average temperature gradient.

In the reference configuration, we assume that the shell has uniform thickness 4 and
is at uniform temperature 8,. Then the reference values of the various kinematic quantities
may be denoted byt

r=R, d=D=A,, a,=A, a?=4"2  (23ab,c,d)
0=0,, ¢=0, (2.3¢,)

where R, A, and 4'/2 depend on the coordinates 8 only. For the rigid heat conductor
considered here, there is no distinction between the reference and the present configurations,
so that eqns (2.3a~d) hold for all time. Further, all tensor quantities will be referred to the
base vectors A, and their reciprocals A’ defined by

AcA =4, 2.4)

where &/ is the Kronecker symbol.

Let P, bounded by the closed curve 0P, denote the region occupied by an arbitrary
material portion of the surface ¢, and let v be the unit outward normal to dP. Using the
notation of [3], we define the following quantities: the positive mass density (mass per
unit area of P) in the reference configuration p, = po(6®); the specific (per unit mass of P)
entropies 1 = n(6% t) and n, = n,(6%, 1) ; the specific internal rates of production of entropy
E=§0%10), & =¢&,(60n and T, =2,(61); the entropy fluxes k =k(6%1;v) and
k, = (6% 1; v), each per unit length of the curve P the specific external rates of supply of
entropy s = s(6° ¢) and s, = (6 1); the specific internal energy & = ¢(6, ¢); and the specific
Helmbholtz free energy y = @(6°, 1) = e—6n— ¢n,. With suitable continuity assumptions,
it can be shown that[3, 4]

k=p-'v=p,, ky=p,'v=Dp%v,, (25a,b)

where v, = A,* v are the components of the normal vector v and where we use the usual
summation convention over repeated indices. Further, with reference to the energy
equation, the specific external rates of heat supply r and r;; and the heat flux vectors q
and q, are defined by

r=0s, r, = ¢s,, q = 6p, q; = ¢p. (2.6a,b,c,d)

Now the local forms of the balances of entropy may be recorded as[3]

poti = po(s+8&)—P%las  potis = polsi +E1)—pila (2.7a,b)

where a dot denotes material time differentiation and where a bar denotes covariant
differentiation with respect to the metric 4,4 of the shell surface. For later convenience,
we recall[3, 4] definitions for the metric tensor 4,4, and its reciprocal A%, the curvature
tensor B,;, the Christoffel symbol I'gs, and covariant differentiation in the forms

Aaﬂ = Aa * Aﬁ, Aaﬂ = A*- Aﬁ, Baﬁ = Au,ﬁ * A3, (2.83, b, c)

1 Throughout the text, Greek indices have a range (1, 2) and Latin indices have a range (1,2, 3).
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r:ﬂ = Aa.ﬂ 'A¢9 9|u = 0.19 Pulﬁ = p?ﬂ+r:ﬂpas (2-8da €, f)
where a comma denotes partial differentiation with respect to 6°.

Equations (2.7) must be supplemented by an energy equation and constitutive
equations. It follows from [3] that the energy equation for a rigid thermoelastic shell is
satisfied provided that

= —0y/08, n, = —0Y/o® (2.9a,b)
and
PoBC+pedC i +p-g+pi'81 =0, (2.10)
where the temperature gradients g and g, are defined by

g=10.A% g =¢,A" (2.11a,b)

Confining attention to a rigid shell which is thermally isotropic, we specify constitutive
equations in the form

2000 = —B3(0*—2600)—Bp*—280, (2.12a)
P=—ag P1=—big, (2.12b,¢)
pob¢ = aog g+b18) 8 +b:0%, (2.12d)
pol1 = poli = —b19, (2.12¢)

where ao, b,, b,, B;— B s are constants. Substituting (2.12a) into (2.9) we have

pont = B3(0—60)+Bs,  pony = Bud. (2.13a,b)

The form of the constitutive equations (2.12) represents a slight generalization of those
introduced in [3] for the linear theory.t These equations are chosen to automatically satisfy
the reduced energy eqn (2.10) without approximation.

In postulating the form of the constitutive equations (2.12), there is a tacit assumption
that constitutive equations which are valid for a plate are also valid for a shell. In the
discussion in Section 5, we observe that certain geometrical features of the shell must be
included in the constitutive equations to predict relatively accurate results for a solid
sphere. These geometrical features of the shell may be introduced by appropriately
modifying the constitutive equations to take the forms

208hy = —B3(6* —260,)— B> —28;0, (2.142)
P=—a P =-bg, (2.14b,¢)

Pobs = avg g+b:8: 81+ (po/PEMb29%, (2.14d)

PYhE, = pthé, = —b:9, (2.14¢)

pont = (po/pS M) [B3(0—00)+Bsl,  ponts = (po/pER)B 4D, (2.14f, g)

t The sign convention associated with the constants f, 8, used here is chosen to be opposite from that used
in [3] to make §, and B, positive quantities.
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where p} is the constant three-dimensional mass density (mass per unit volume) of the
material, and & is the constant thickness of the shell. The constitutive equations (2.14f, g)
depend on the geometry of the shell through the ratio po/p?h [see eqn (2.17a)].

Within the context of the general theory, the constitutive equations must be further
restricted by statements of the second law of thermodynamics[3]. For either of the sets of
constitutive equations (2.12) and (2.13) or (2.14), these restrictions reduce to

a, 20, b, 20, b, 20, B> 0. (2.15a,b,¢,d)

To linearize the equations presented above, we assume that the temperatures (6 —6,) and
¢, and their space and time derivatives are small enough that quadratic expressions in
these quantities may be neglected relative to linear expressions. It follows from (2.12d) or
(2.144d) that ¢ is of higher order so that £ may be set equal to zero in (2.7a).

Now we recall[3, 4] that the Cosserat theory which is developed by direct approach
may be brought into a one-to-one correspondence with the three-dimensional theory by
assuming that the position vector r* of a point in the shell and the temperature field 6*
admit the representations

I = r*(6°, 6%, 1) = r(6*, 1)+ 6d(8%, 1), (2.16a)
9* = 9*(6°, 0%, 1) = 6(6°, 1)+83p(6%, 1), (2.16b)

where 6° is a coordinate through the thickness of the shell. For a shell of constant thickness
h, we may choose the reference surface of the shell to be the middle surface and define
the top surface dP* of the shell by 6° =h/2 and the bottom surface 6P~ by 6° = —h/2.
If the three-dimensional mass density p} of the shell is constant, then it may be shown
that[3, 4, 6)

h/2

A=podl = f pEG'? d6° = (p3hAV?)[1+(h*/12)(BIBi— BiB1), (2.17a)
/2

h{2
As = A§S—B*k*—-B k-, A§ = pYs*G? 463, (2.17b,¢)

—h/2
h/2

As, = 4§, —(h/2)B*k* +(h/DB k-,  A§, = f pEs*G26° d6?, (2.17d,¢)

—k/2

G2 = A'[1 —63B2 +(6°)%(B! B — B?B})), (2.17f)

B* = A'*[1—(h/2)B; +(h*/4) (B{B}— BiB})], (2.17g)
B~ = A'Y[1+(h/2)B + (h*/4) (B! B3 — B} BY)], (2.17h)
0+ = 0+(h/2)p, 0~ =6—(h/2)¢, (.17, j)

where s* is the three-dimensional rate of entropy supply; k* and k— are, respectively, the
entropy fluxes applied to the major surfaces dP* and 0P~ ; Bj are the mixed components
of the curvature tensor; and 6+ and 6~ are, respectively, the temperatures on the major
surfaces dP* and 0P~. Also, we note that for the linear theory,

Ook* = q*, Bok- = —q-, (2.18a,b)

where ¢* is the heat flux measured positive for heat flowing out of the surface P+, and
g~ is the heat flux measured positive for heat flowing into the surface dP-.
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Most of the constitutive coefficients were evaluated in [3] by direct integration of
the three-dimensional constitutive equations. An alternative approach was taken in [6),
where the coefficients were evaluated by comparing Cosserat solutions with exact three-
dimensional solutions. Except for the value of §,, the results in [3] and [6] are the same.
Here we adopt the resuits in [6] and specify

ao = Khjf,, b, = Kh3/120,, b, = Kh/8,, (2.19a,b,¢)
Bs = p8chi0y, B = pYch’/nb,, (2.19d,¢)

where K is the thermal conductivity, and c is the specific heat at constant strain of the
material. The coefficient f; corresponds to the arbitrary constant reference value of the
entropy and therefore cannot be specified. Since the material constants K and ¢ are positive,
we realize from (2.19) that the restrictions (2.15) are satisfied.

Finally, we use (2.14) and (2.17)-(2.19) to write the linearized version of eqns (2.7) in
the form

pocd = poboi—A~V[B*q* — B~q~]+KhV?0, (2.20a)
(Poch?(m2)P = poBos\ — A~ V*(h/2) [B*q* + B~ ¢~ 1—(po/pE WKhd+(Kh*[12)V?9,
(2.20b)
where the Laplacian operator V2 is defined by
V20 = 40|45 = A(0,5—T%0,,). (2.21)

3. PLATES

In this section, we examine the validity of the Cosserat theory in the thin-shell limit
by considering three problems of heat conduction in a plate. These problems are chosen
to examine the effects of specifying heat flux, temperature or radiation-type boundary
conditions on the major surfaces of the plate. For each of these problems, we neglect
external entropy supply (or external heat supply) and consider temperature fields which
are functions of time, only so that

§=0, & =0, 0=0010, ¢=7¢0. (3.1a,b,¢,d)
Further, the curvature tensor B, for a plate vanishes. Hence from (2.17) we deduce that
By=0, po=p%h, B*=A4"2, B~ =A4Y% (3.2a,b,¢,d)
and that eqns (2.20) reduce to
pichd = ~g* +q-, (3.3a)
(08 ch*[n?) = —Yg* —d¢~—Ko. (3.3b)

Probiem 1: For this problem, the heat flux ¢* is specified to be constant on the top
surface, the bottom surface is insulated, and the plate is initially at uniform temperature
0,. Mathematically, these conditions are characterized by

gt = const, q- =0, (3.4a,b)

0 =0, ¢ =0, att=0. (3.4c,d)
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Since the solution of eqns (3.3) with the conditions (3.4) was developed in [6], we merely
record the solution in the nondimensional form

—K(0—00)/hg* =7, —K¢/g* = {1 —exp(—n’r)], (3.5a,b)
where 7 is the nondimensional time parameter defined by
t = Kt/p¥ch?. (3.6)
Recall from [6] that the constitutive éoeﬂicients were chosen by requiring the Cosserat
solution to compare very well with the exact solution recorded in [5] (p. 112).

To exhibit this comparison graphically, we have used (2.16b) to plot in Fig. 2 the
Cosserat solution (3.5) together with the exact solution for various values of the time
parameter 7. The dashed lines in Fig. 2 have been taken directly from [5] (Fig. 15, p. 113)
and

x=03+h/2, 3.7
so that x = 0 locates the bottom surface 6P~, and x = A locates the top surface oP*.

Problem 2: For this problem, the temperature 87 is specified as 8, on the top surface, the
heat flux ¢~ is specified to be constant on the bottom surface, and the plate is initially at
uniform temperature 6,. Mathematically, these conditions are characterized by

6* =4,, = const, (3.8a,b)

g
0 =6,, ¢ =0, att=0. (3.8¢,d)

03 l I L |
0 02 04 06 08 1.0

x/h

Fig. 2. Normalized temperature in a plate of thickness A, with zero heat flux at x = 0, constant

heat flux g* (out of the plate) at x = h and uniform initial temperature 8 = §,. The numbers on

the curves are values of © = Kt/p%ch®. The dashed lines are the exact solution, and the solid lines
are the Cosserat solution.
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With the help of (2.17i), condition (3.8a) yields

—(h/2)¢. (3.9

It is important to observe here that by specifying 8+, we tacitly specify 0 in terms of ¢
through eqn (2.17i). It follows that it is not possible to specify independent initial values
for 8 and ¢ such as (3.8¢, d). In other words, when temperature is specified on one or both
of the major surfaces, we must, in general, modify the initial conditions. However, in the
special case of this problem, conditions (3.8c, d) are consistent with (3.9).

Since 67 is specified, the heat flux ¢* must be determined from eqns (3.3). Thus,
using (3.9) in (3.3a), we deduce that

g% = q~ +(p¥ch?/2)¢. (3.10)

Substituting (3.10) into (3.3b), we have

4+n

p3ch2< )¢+K¢ = —q- (3.11)

Now solving (3.11) subject to the initial condition (3.8d), we may write the normalized

solution in the form
e ol (S]] om
il ()] om
TN R

where 7 is defined by (3.6).
To compare the Cosserat solution (3.12) with the exact solution recorded in [5]
(p. 113), we rewrite the exact solution in the form

K(6*—8y) (-n" 2n+1 (2n+1)*x?
L - - 3 5 ] (5 o0 e - B2 |
(3.13)

Let us define the average temperature 63, and average temperature gradient ¢f,; in the
plate by the equations

hi2
orv.—eo=1f (6*—05) 46, (3.14a)
h —h/2
12 (W2
b =173 | (6%—00)0° d6°. (3.14b)
h3 —h/2

Then substituting (3.13) into (3.14) and performing the integration, we deduce the results

. _ 2 1 2n lz 2
K(O;;;_ D) 1[ 3 ,.Z:'O(Z(n-i-)l‘)’ p{_(__%)_’_‘_r}], (3.15a)
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- © |-4— -1y 2n+1)3n2
Ry %8 [ D [ 2] s

n=0

Since the quantities 6 and ¢ in the Cosserat solution correspond to 63, and ¢3,,, we have
plotted each of these in Fig. 3. The solid lines correspond to normalized values of 6 and
¢, and the dashed lines correspond to normalized values of 8%,; and ¢},,. The comparison
for all values of T seems quite acceptable.

Problem 3: For this problem, we consider a plate of thickness 2A. The heat flux is specified

appropriately for radiation from both the top and bottom surfaces, and the plate is initially
at a uniform temperature 6,+ V. Mathematically, these conditions are characterized by

gt =KH(6* =00, ¢~ =—KH(O™ —0,), (3.16a,b)
0=0,+V, ¢=0 at t=0, (3.16¢,d)

where H is a constant specifying thermal radiation from the major surfaces. First, we will
solve the problem as it is formulated in (3.16), and second we will obtain a more accurate
solution by exploiting the symmetry about the center plane.

For the first solution, we substitute (2.17i,j) and (3.16a,b) into egns (3.3) and then
réplace h by 2h to obtain

pichd = — KH(0—0,), (4p%ch?/n*)¢ = — K(1+ Hh)é. (3.17a,b)
Using the initial conditions (3.16c, d), the solution of (3.17) becomes
(6—0,)/V = exp (— Hhr), ¢=0, (3.18a,b)

where < is again defined by (3.6). To compare the Cosserat solution (3.18) with the exact

1.0
09 A K¢

0.8 /

0.7

0.6 7

05 = 7

0.4 i A / KO -6,
/ hq”

0.3 4

—

0.2 SV

o..1 / ’/
——

(4]
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0
LOG,q {7}

Fig. 3. Values of the normalized average temperature [K(6+6,)/hg"] and average temperature

gradient [— K¢q~] for a plate of thickness # with heat flux ¢~ (entering the plate) at its bottom

surface and the temperature 8+ = 6, specified on the top surface. Initially, the temperature §- = 6,

at the bottom surface. The dashed lines are the exact solution, and the solid lines are the Cosserat
solution. t = Kt/p¥ch?.
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solution recorded in [5] (p. 122), we rewrite the exact solution in the form

6*—6, & 2Hh cos(x,0°/h) sec a,
vV & [(HR)?:+ Hh+al)

exp (—%:7), (3.19a)

«, tan a, = Hh, (3.19b)

where a, are the positive roots of equation (3.19b) and where 8° = 0 locates the center of
the plate, 8% = hlocates the top surface, and 6 = — /A locates the bottom surface. Replacing
h by 2A in (3.14) and using (3.19), we deduce the expressions

03s—00 & 2(Hh)? )
v & R+ Hhrad] P %) (3.208)
Pt =0. (3.20b)

Comparing (3.18b) with (3.20b), we see that the Cosserat theory predicts the correct value
for the average temperature gradient. To compare the prediction of the average temperature,
we have plotted (3.18a) as the solid lines and (3.20a) as the dashed lines in Fig. 4 for three
values of the normalized radiation coefficient HA. From Fig. 4, we observe that for small
values of Hh, the Cosserat theory predicts accurate results, whereas for large values of
Hh, it does not. This is because for small values of Hh, heat is radiated slowly away from
the major surfaces of the plate, so that the temperature through the thickness of the plate
is nearly uniform, as predicted by (3.18b). However, for large values of Hh, heat is radiated
rapidly away from the plate, and the through-the-thickness temperature gradient may be
steep.

Mathematically, we may exploit the symmetry in the problem stated above and thus
confine attention only to the upper haif of the plate. Therefore, for this second solution,
we consider a plate of thickness 4. The heat flux is specified appropriately for radiation
from the top surface; the bottom surface (which corresponds to the center surface of the
plate of thickness 24) is insulated, and the plate is initially at a uniform temperature 8,4+ 7.

1.0
08

08

0.7

9-6, 086
v 0.5
04

03
0.2

0.1 —
N . N,
0.0 :
20 -5 -10 05 00 05 1.0

LOG,q (0

Fig. 4. Vaiues of the normalized average temperature (6—0,)/V for a plate of thickness 2k with
radiation from its surfaces fi.e. g* = KH(0* —0,)] and uniform initial temperature 8 = 8,+ V. The
dashed lines are the exact solution, and the solid lines are the Cosserat solution. © = Ki/p$ ch?.
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These conditions are characterized by (3.16) with (3.16b) replaced by

g- =0. (3.21)

At this point, it is important to note that although the exact solutions of the two problems

considered here are identical, the Cosserat solution of the second problem will be more

accurate than the Cosserat solution of the first problem. This is because the solution of

the second problem admits a nonzero temperature gradient in the top half of the plate.
Substituting (2.17i), (3.16a) and (3.21) into eqns (3.3), we obtain

pbchd = — KHIO+(h/2)¢p— 0], (3.22a)

plch?
1!2

¢ = —iKH[0+ (h/2)p—00)— Ko. (3.22b)

In their present form, these equations are coupled. However, by solving (3.22a) for ¢ and
substituting the result into (3.22b), we may define

@00V = /@), (.23)
and write
h 2 4 d? d
Ryt me L o=, (3.240,1)

where B and C are constants defined by
B = n2+ Hh+(n*/4)Hh, C = n*Hh, (3.25a,b)

and 7 is defined by (3.6). Using (3.6), (3.23) and (3.24a), the initial conditions (3.16c, d)
become

f=1, df/dr = — Hh, att=0. (3.26a,b)

Solving (3.24b) subject to the conditions (3.26), the Cosserat solution may be written in
the form

(6—06y)/V=A, exp(—0,1)+ A, exp(—0,1), (3.27a)

—_ ﬁg = 2[Al exp(-—al‘t)+A2 exp(_afc)]
—(2/Hh)[A,0, exp(—0,7)+ 4,0, exp(—0o,7)], (3.27b)

where the constants 4, 4,, 7, 0, are given by

c,—Hh Hh—o0,
A4, = , Ay = ———,
'" ay—a, 7 g,—0,

(3.28a, b)

o, =1[B—(B*-4C)"?, o, =13[B+(B*—4C)"?. (3.28¢,d)

Replacing 6° in (3.19a) by #/2+ 63, we may write the exact solution for the top half
of the plate as

6*—0, & 2Hh cos{a,(h+20%)/2h} sec a,
V n ne) [(Hh)2+Hh+¢3]

exp (—a21), (3.29)
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radiation from its top surface [i.e. g* = KH(0* —08,)], zero heat flux on its bottom surface, and

uniform initial temperature 6 = 6,+ V. The dashed lines are the exact solution, and the solid lines
are the Cosserat solution. t = Kt/p3ch?.

where a, are the positive roots of (3.19b), and where 63 = h/2 locates the top surface, and
0% = —h/2 locates the bottom surface (which corresponds to the center surface of the
plate of thickness 2h). Substituting (3.29) into the definitions (3.14a,b), we obtain the
result (3.20a) for the average temperature 8y, and the result

_ hod, - ® Hhla, sin a,+2(cos a,— 1)] sec a,

4 12 ,.;1 «2[(Hh)*+ Hh+o] exp (—a;7). (3.30)

Figure 5 compares values of the average temperature with (3.27a) plotted as the solid lines
and (3.20a) plotted as the dashed lines. Similarly, Fig. 6 compares values of the average
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0.2 .
. I 3
/ Hh=0.1 N
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LOG, 4 (1}

Fig. 6. Values of the normalized average temperature gradient [—A¢/¥] for a plate of thickness 4

with radiation from its top surface [i.e. g+ = KH(0* —0,)}, zero heat flux on its bottom surface,

and uniform. initial temperature = 04+ V. The dashed lines are the exact solution, and the solid
lines are the Cosserat solution. t = Kt/p}ch?.
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temperature gradient with (3.27b) plotted as the solid lines and (3.30) plotted as the dashed
lines. From Figs. 4 and 5, we observe that modeling only the upper half of the plate
produces a significant improvement in the prediction of the average temperature for the
higher values of Hh. Also, we observe from Figs. 5 and 6 that, for Hh = 0.1, the Cosserat
and exact solutions are nearly identical, and the average temperature gradient remains
relatively small.

4. CIRCULAR CYLINDRICAL SHELLS

In this section, we investigate the validity of the Cosserat theory in the thick-shell
limit by considering heat conduction in a circular cylindrical shell and taking the limit of a
solid cylinder. Specifically, consider a circular cylindrical shell of uniform thickness » and
mean radius R. Let e; (i = 1,2,3) be a set of fixed Cartesian base vectors, and let e be
base vectors of a polar coordinate system with polar angle y defined byt

e, =e,, €3 = COS ye, —sin ye;, €3 = sin ye, +cos ye,, (4.1a,b,¢)

where e is parallel to the generator of the cylindrical geometry.
Now points on the reference surface of the shell may be located by the position vector
R given by

R = xe}| 4+ Re}, 9 =x, 8=, (4.2a,b,¢)
where we have identified the coordinates ' and 62 with x and y, respectively. Using the
definitions in [3] and in Section 2, the relevant geometrical properties of the cylindrical

surface may be recorded as

AV*=R,  A=1, A?=0, A?=1/R%,  (43ab,c,d)

B} = ~1/R, aliother B3=0, TI%=0. (4.3e,1, )
Substituting (4.3) into (2.17), we have
po=pth, B* = AV}(1+h/2R), B~ = AY*(1—h/2R). (4.4a,b,c)
It follows that the thermal equations (2.20) become
pichl = p3h8,§—(1+h2R)g* +(1 —h/2R)q~ + KhV?6, (4.5a)

plch?
nz

1 h 1 h Kh?
= % —— —_— gt - - — e} — e U2
¢ = pt8,s, 2(1 +2R)q 2(1 ZR)q Ko+ 5 Vi, (4.5b)

where the Laplacian operator V28 for the cylindrical geometry is given by

96 1 0%

0 e —
V(J—-ax2+R2 o

(4.6)

Problem 1: Here we consider the problem for which- the heat flux on the outer surface is
constant, the inner surface is insulated, external entropy supply is neglected, and the shell

t Although this coordinate system is unconventional, it is chosen because it yields convenient relations
between A, and e;.
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Fig. 7. Normalized temperature in a solid circular cylinder of radius 4, with constant heat flux g+

(out of the cylinder) at its surface and uniform initial temperature 8 = §,. The numbers on the

curved lines are values of t = Ki/p§ch?. The dashed lines are the exact solution, and the solid
lines are the Cosserat solution.

is initially at uniform temperature 6,. Hence the conditions (3.1) and (3.4) hold, and egns
(4.5) reduce to

p3chd = —(1+h/2R)q", 4.7a)
pichd = —Kp—i(1+h/2R)q". (4.7b)
Integrating (4.7) subject to the initial conditions (3.4c, d), we obtain

~K(0—8,)/hg* = (1+h/2R)z, (4.82)

~Ko/q* =31 +h/2R)[1 —exp(—n’7)], (4.8b)

where 1 is defined by (3.6). Notice that in the thin-shell limit (R/h — <o), the solution (4.8)
approaches the plate solution (3.5). In the thick-shell limit of a solid cylinder for whicht
R = hf2, the right-hand side of (4.8a) becomes 2t which is consistent with the exact
solution[5 (p. 203)]. Using (2.16b), the Cosserat solution (4.8) with R = A/2, is plotted in
Fig. 7 together with the exact solution for various values of the time parameter 7. The
dashed lines in Fig. 7 have been taken directly from [5] (Fig. 25, p. 203), and r is the radial
coordinate with r = 0 locating the center of the cylinder and r = A locating the outer
surface.

t From {3}, we recall that generally G'/2 is required to be positive. Although the quantity G'/? vanishes when
0% = —h/2 and R = hf2, this poses no particular difficulty in the problems considered here.
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In view of the form of solution (4.8), it is obvious that the long-time temperature is
dominated by the term (4.8a). The fact that the coefficient of t in (4.8a) yields the correct
result even in the thick-shell limit suggests that the Cosserat theory retains the important
geometrical features of the shell. In this regard, it is worth mentioning that the result
(4.8a) could be obtained using an engineering approach in which the temperature in the
shell is assumed to be uniform, and the energy entering the outer surface is equated with
the increase in internal energy. It is also worth mentioning that the solution of the more
accurate eqn (15) of [1] yields a long-time solution of the form

_ K@ -8y _ [sinh (h/2R)+cosh (h/zR)]T 9

hg* (2R/h) sinh (h/2R)

In the thin-shell limit, (4.9) yields the correct result, but in the thick-shell limit, it yields
the result (2.3131), which is incorrect. Thus, even though eqn (15) of [1] is more complicated
than eqns (4.8), it does not necessarily produce a better result.

Problem 2: To further examine the validity of the constitutive equations (2.14b, c) and the
specifications (2.19a,c), we consider a simple problem for which the Laplacian operators
in (4.5) do not vanish. Specifically, consider the steady-state problem of uniform heat
conduction in the constant e, direction for which the three-dimensional solution is given
by

q* =Qe;, 0% =[0,—(QR/K) cos y]—6°[(Q/K)cos 7], (4.10a,b)

where q* is the three-dimensional heat conduction vector, and Q is a constant. Usiné 4.1
and (4.10), we realize that

gt =q" =q* ¢e;=Qcos . 4.11)

Consequently, in the absence of external entropy supply the steady-state solution of (4.5)
becomes

0=0,—(QR/K)cosy, ¢ = —[1+(*/12R})]-(Q/K) cosy. (4.12a,b)

Now, with the help of (2.16b), we may compare the exact result (4.10b) with the Cosserat
result (4.12) to conclude that the average temperature is predicted exactly. Further, the
prediction of the average temperature gradient ¢ is very accurate in the thin-shell limit
(R/h = ) and is only 25% low in the thick-shell limit (R/h — 1/2).

5. SPHERICAL SHELLS

The spherical shell geometry is considered here mainly because it is one of the simplest
geometries in which it is possible to investigate the differences between the constitutive
assumptions (2.12) and (2.14). Three problems of a spherical shell of constant thickness A
and radius R are gonsidered. For the first two problems, we consider the thick-shell limit
of a solid sphere and discuss the differences between assumptions (2.12) and (2.14). For
the third problem, we consider the transition from a thick shell to a thin shell.

With reference to the Cartesian base vectors e; introduced in Section 4, we let e/ be
base vectors of a spherical coordinate system with polar angle y (0 < y < 2n) measured
from the e;—e; plane and polar angle ¢ (—7/2 < ¢ < 7/2) measured from the e,—e, plane
such thatt

e = —sin ye, +cos ye,, (5.1a)

+ Although this coordinate system is unconventional, it is chosen because it yields convenient relations
between A, and ;.
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e; = —sin o(cos ye, +sin ye,)+cos de;, ' (5.1b)
e’; = cos o(cos ye, +sin ye,)+sin oge;. (5.1c)

Now points on the reference surface of the shell may be located by the position vector
R given by

R = Re}, 0 =y, 02 =0, (5.2a,b,¢)

where we have identified the coordinates 6! and 62 with y and o, respectively. Using the
definitions in [3] and in Section 2, the relevant geometrical properties of the spherical
surface may be recorded as

AY? = R? cos o, A'' = 1/R? cos? o, A2 =0, A*? = 1/R?,
(5.3a,b,c,d)

B} =B} = —1/R, all other Bj =0, (5.3¢,1)

I, =T}, =—tanos, T? =sincgcoso, allother 'y =0. (53gh,i)

Substituting (5.3) into (2.17), we have

po = pLh(1+h?/12R?), B* = AV*(1+h2R)?, B~ = AV*(1—h/2R)%.
' (5.4a,b,c)

It follows that the thermal equations (2.20) become

h h ¥ h}
pSch(l + 12Rz>6 Pobos— ( ZR) q +(l - ~2—§> q- +Khv?6, (5.5a)

pich’ RN, . h( h2+(h)< h)’_
2 (1+12R=¢“"°9°s‘ L+3)9" ~\z)\ ~2&)4

A2 KR _,
—Kh(l + 12R2)"’+ 7 Vi$, (5.5b)

where the Laplacian operator V20 for the spherical geometry is given by

1 629 1 926 tano 00
29 = ——— e )
v R?cos? ¢ dy? *RideT  RT o .6)

Problem 1: For the first problem, the heat flux on the outer surface is constant, the inner
surface is insulated, external entropy supply is neglected, and the shell is initially at uniform
temperature 6,. Hence the conditions (3.1) and (3.4) hold, and eqns (5.5) reduce to

pYch(1+h*/12R*)d = —(1+h/2R)*q*, (5.7a)

hz h 2 hz
pxncz ( 12R2)"S"_ ( ZR)q ‘K(lem)"" (5.70)
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Integrating (5.7) subject to the initial conditions (3.4c, d), we obtain

K©O-0,)  (1+h/2R)?
T Thgt T (I+AYI2RH"

(5.8a)

_Xe_ M[l —exp (—n%)), (5.8b)

where 7 is defined by (3.6). Notice that in the thin-shell limit (R/h — o0), the solution (5.8)
approaches the plate solution (3.5). In the thick-shell limit of a solid sphere for which
R = h/2, the right-hand side of (5.8a) becomes 3t which is consistent with the exact
solution[5 (p. 242)). Using (2.16b), the Cosserat solution (5.8) with R = A/2 is plotted in
Fig. 8 together with the exact solution for various values of the time parameter z. The
dashed lines in Fig. 8 have been taken directly from [5] (Fig. 31, p. 242), and r is the radial
coordinate with r = 0 locating the center of the sphere and r = A locating the outer surface.

From Fig. 8, we observe that for long time the value of the average temperature
gradient predicted by the Cosserat theory is substantially larger than the exact value.
However, this is not particularly important because for long time the temperature is
dominated by the term (5.8a). To exhibit this, we have used (2.171, j) together with (5.8) to
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Fig. 8. Normalized temperature in a solid sphere of radius 4, with constant heat flux ¢* (out of

the sphere) at its surface and uniform initial temperature 8 = 8,. The numbers on the curves are

values of 7 = K1/p$ch?®. The dashed lines are the exact solution, and the solid lines are the Cosserat
solution.
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of a solid sphere of radius A, with constant heat flux g+ (out of the sphere) at its surface and

uniform initial temperature 0 = 6,. The dashed lines are the exact solution, and the solid lines are
the Cosserat solution. t = Kt/p$ch?.

plot in Fig. 9 the temperature on the outer surface and at the center of the solid sphere.
The dashed lines in Fig. 9 represent the exact solution[5 (p. 242)]. For short time, the
Cosserat theory predicts the incorrect result that the center temperature of the sphere
drops. This is a consequence of the overprediction of the average temperature gradient.
For long time, the lines in Fig. 9 are parallel, and the relative error diminishes to zero.
This is because the prediction (5.8a) is exact in the thick-shell limit. In this regard, it is
worth mentioning that the result (5.8a) could be obtained using the engineering approach
described in Section 4. It is also worth mentioning that the more accurate eqn (15) of [1]
yields a long-time solution of the formt

_K@*=8) _ [sinh (h/R)+cosh (h/R)]T. (5.9)

hg* (R/h) sinh (h/R)
In fhe thin-shell limit, (5.9) yields the correct result, bui in the thick-shell limit, it yields
the result (4.0757), which is incorrect.

We are now in a position to comment on the differences between the constitutive
eqns (2.12) and (2.14). If (2.12a) was used instead of (2.14a), then the average temperature
would be given by

—K(6—60)/hg* = (1+h/2R)*z (5.10)

instead of (5.8a). This would yield the incorrect result 4z in the thick-shell limit. Similarly,
if (2.12d, e) were used instead of (2.14d, ¢), then the long-time value of ¢ would be

—K¢/g* = 3(1+h/2R)?, (5.11)
which produces a larger error than that associated with (5.8b) in the thick-shell limit.

Problem 2: To further examine the validity of constitutive equations (2.14b, c) and the
specifications (2.19a, c), we consider the steady-state probiem of uniform heat conduction

t The solution in Appendix A of [1] should be written in a form which has a linear term in time.
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in the constant e, direction for which the three-dimensional solution is given by
q* =Qe,, 6*=[0,—(QR/K) cos y cos o]—0°[(Q/K) cos ycos 0], (5.12a, b)

where q* is the three-dimensional heat conduction vector, and @ is a constant. Using (5.1)
and (5.12), we realize that

g* =q~ =q* e; = cosycosa. (5.13)

Consequently, in the absence of external entropy supply, the steady-state solution of (5.5)
becomes

0 = 60,—(QR/K) cos y cos g, ¢ = —(Q/K) cos y cos o, (5.14a,b)
which is an exact result valid for both the thin- and thick-shell limits.
Problem 3: Finally, to examine the transition from a thin-shell to a thick-shell, we consider
the steady-state problem where the temperature 8+ on the outer surface is specified to be
the constant value 8, and the heat flux g~ on the inner surface is constant. Thus, using
(2.17i), we require

0+(h/2)p = 8,, g~ = const. (5.15a,b)

In the absence of external entropy supply, the steady-state solution of (5.5) becomes

K(0—-6,)  (1—h/2R)? K¢ (1-h/2R)?

hg-  2(1+AY12R%)’ ¢- (A +h¥12R%)’ (5-168,b)
g* _ (1—h/2R)?
g~ (1+h/2R)?*’ (3-16¢)
It can be shown that the exact solution[5 (p. 247)] may be written in the form
* __ - 2(1..903
K(6*—8,)  (1—h/2R)*(1~-2603/h) 5.17)

hg=  2(1+h2R)(1+63/R)’

and that (5.16¢c) is an exact result. Now to compare the predictions (5.16) with the exact
solution (5.17), we have used (2.16b) to plot (5.16) as the solid lines in Fig. 10 and have
used (5.17) to plot the dashed lines in Fig. 10 for three values of R/A. The results in Fig.
10 show again that the Cosserat predictions are good even for a fairly thick shell (R/A = 1).

6. CONICAL SHELL

In the previous sections, we have solved a number of problems for plates, circular
cylindrical shells and spherical shells to develop confidence that the Cosserat theory can
predict relatively accurate results for both the thin-shell limit (which models the base of a
conical shell) and the thick-shell limit (which models the tip of a conical shell). Here we
confine attention to a conical shell with constant thickness # and locate points on the
conical surface by

R = fiRe) + Re}, 0! =R, 02 =y, (6.1a,b,¢)
where R is the radial coordinate, y is the polar angle, e are defined by (4.1), f is a constant

related to the cone angle (see Fig. 1), and we have identified the coordinates 8' and 62
with R and 7y, respectively. Using the definitions in [3] and in Section 2, the relevant
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Fig. 10. The normalized steady state temperature in a spherical sheil with constant thickness 4 and

mean radius R. The heat flux ¢~ (entering the shell) is specified on the inner surface and the

temperature 8+ = 6, is specified on the outer surface. The dashed lines are the exact solution, and
the solid lines are the Cosserat solution.

geometrical properties of the conical surface may be recorded as

AV = RO+, A =1/(1+BD), A'2=0, A2=1/R},
(6.23,b,¢,d)

B} = —B/R(1+p%)"?,  all other B} =0, (6.2¢, )
Fly=—-R/(1+p%), T} =T%=1/R,  allotherI';=0. (6.2g,h)

Substituting (6.2) into (2.17), we have

. A _ hp
I I SR (e

(6.3a,b,0)
It follows that the thermal equations (2.20) become
$ch = pRhByi—| 1 + =P ++[1 ———L] -+ KhV 0 (6.42)
. il 2R+ ! RA+pH " | ’ '

. 1 B Ll m_ ]
= ¢=psom—i[‘+m]" ‘i["maw’)”’]"

2 _
-Ko + %V’q&, (6.4b)

where the Laplacian operator V 20 for the conical geometry is given by

1 1 0 a6 (1+8% 0%
V0= g Lok (Ra) + S 5 | ©



Heat conduction in plates and shells 547

Here we consider the problem for which the heat flux on the outer surface is constant,
all other surfaces are insulated, external entropy supply is neglected, and the shell is
initially at uniform temperature 8,. Hence the conditions (3.4) hold in addition to the
conditions

0=0(R1, ¢=0¢R1), (6.6a,b)
06/0R=0, 0¢/0R=0, atR=R, R, (6.6¢,d)

where R, and R, are the tip radius and base radius of the shell, respectively (see Fig. 1).
Under these conditions, eqns (6.4) reduce to

hp . Kh @ a0
pichd = —[1 + 2R(l+ﬂ2)”2:|q + R+ 55 3R (Rb-ﬁ>’ (6.72)

pich® , 1 hp .\ K* 8 ( gg)
—r¢= “5[1 +W]" ~ke+ Gra+py R \Rar) ©

To analyze these equations, it is convenient to introduce the nondimensional parameters

z= R/h, T = Kt/p§ch?, (6.8a,b)
§=10(z,1)= —K(O—00)/hg*, ¢ =d(z1)=—Kd/g*, (6.8¢c,d)
and rewrite them in the form
of 1 108( A8 B
ot (1+p)z oz (279?) - [1 Tz +ﬂ2)'/=]’ €9
¢ n? 14( @ n? B
E'f‘ ﬂ2$———12(1+ﬂ2);-6—2'(2'5§>=7[1+‘———22(1+ﬂ2)1,2]. (6.9b)

Similarly, the initial conditions (3.4¢, d) and boundary conditions (6.6c, d) become

=0, ¢=0, atr=0, (6.10a,b)

86/0z =0, 0¢/oz=0, atz=z,z,, (6.10c,d)

where z, and z, are the values of z when R equals R, and R,, respectively. At this point,
it is of interest to note that in the limit of large g (8 — ), eqns (6.9) reduce to a non-
dimensional form of (4.7) for a circular cylindrical shell, and in the limit of small g

(B — 0), eqns (6.9) characterize a circular plate.
Using standard techniques, the solution of (6.9) may be written in the form

f= Ayx) + i A (D fnl2), (6.11a)
=B+ 3 B0fol@. (6.11b)

where f,,(z) are eigenfunctions characterized by

1d (zdf,,,

-5 ) = —o2fn  (nosum onm) (6.12a)

dz.
df/dz=0, atz=z,z, (6.12b)
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and where ? are the nonzero eigenvalues. Since eqn (6.12a) can easily be recognized as
Bessel’s equation of order zero, the solution, subject to the boundary conditions (6.12b),
is well characterized and may be written in the form

Ji(amz,)
Y.(a,,,z.)

Sn(2) = Jo(0m2) — Yo(tm2), (6.13)

where J, and Y, are Bessel functions of the first and second kind, respectively, of order n,
and where a,, are the positive roots of the characteristic equation

J1(@mz1) Y 1(@mz2) — Y (021 ) 1 (@mz2) = 0. (6.14)

Further, the eigenfunctions f,, satisfy the orthogonality conditions

r’zf,.dz=o, Jzzzf,ﬂ&=0, for (m # n). (6.15a, b)

1 1

Substituting (6.11) into (6.9), multiplying the result by z and integrating, multiplying
the result by zf, and integrating, and using the orthogonality conditions (6.15) and the
initial conditions (6.10a, b), we conclude that

_ _ B 1
Ao(®) = Cyr, Co= [1 AT <21+22>]. (6.16a,b)
2 2
A7) = (H-:# [1 —exp {—-(#"kz)t}], (6.16¢)
21+ f’f, dz
Co=— - , (6.16d)
J‘ zfidz
By(7) = 1Cy[1 —exp (—n?1)], (6.16e)
6C,, 2 2
B = i [1 —exp{-—- ’1‘—2 (12 + 15 :_"ﬁ,>r}]. (6.16)

For later reference, we observe that if the dependence on z is neglected in (6.11), then
(6.11) has the same form as the solution (4.8). This means that we would be essentially
modeling the conical shell as an “equivalent” circular cylindrical sheil with “mean” radius
Rih = (z,+2,) (1 +?)?/2B. By considering a specific example, it will be shown that
making this kind of engineering approximation introduces significant errors at the tip of
the conical shell.

Consider the specific example of the conical shell drawn in Fig. 1 which has a solid
tip. For this shell we specify

z, = BRA+pH?,  z,=15 p=3.23. (6.17a,b,¢c)

The minimum value z, of z given by (6.17a) is specified by requiring the inner surface of
the shell to just make contact at the shell’s tip. Using (6.17), we have solved for the first 20
eigenvalues and eigenfunctions and have plotted the solution (6.11) in Figs. 11 and 12 by
normalizing the results by the first terms in the solutions. Figure 11 shows plots of 8/4 ()
vs z for various values of 7, and Fig. 12 shows plots of ¢/By(t) vs z for two values
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Fig. 11. Normalized average temperature in a conical shell of thickness &. The numbers on the
curves are values of T = K1/p$ch?.

of 7. The slight waviness in these curves is caused by the fact that we have approximated
solutions (6.11a, b) using finite series.

From Fig. 11, we observe that for long time the average temperature is relatively
uniform over the shell. This is because the equivalent-cylinder solution 4.(r) dominates
for long time. However, for short time the value of § at the tip is about 65% greater than
that predicted by the equivalent-cylinder solution. This result can be explained by observing
from (4.8a) that a thick cylinder heats up faster than a thin cylinder. Thus we would
expect the tip of the conical shell, which is thick, to heat up faster than its base, which is
thin. From Fig. 12, we observe that the distribution of the average temperature gradient is
nearly constant with time. Also, the value of ¢ near the tip is nearly 65% greater than the
value predicted by the equivalent-cylinder solution.

To exhibit the temporal dependence of this solution more clearly, we have plotted
A7) and By(7) in Fig. 13. From this figure, we observe that By(t) reaches its maximum
value in a relatively short time. Recalling [3], that the average temperature gradient is

1.7 T 1] T ! 1 I 1
- 7= 0,01
1.6 -
1
15 b -
— 1.4 -
) -
By (1) 13 - -
1.2 = -
1.1 & -
10 b -
0.8 L 1 1 -1 1 } ]
0 2 4 6 8 10 12 14 16

Fig. 12. Normalized average temperature gradient in a conical shell of thickness 4. The numbers
on the curves are values of 1 = Kt/p%ch>.
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Fig. 13. Values of the functions 4,(t) and B(r) associated with the conical shell solution.

related to the thermal bending moment in the shell, this means that the bending in a
conical shell under this load will be quite severe at its tip, and the full effect of the load
will be felt in a relatively short time. Consequently, the tip of the conical shell should be
particularly vulnerable to this type of thermal load.

7. SUMMARY

In this paper, we have focused attention on analyzing heat conduction in a rigid
conical shell (Fig. 1). The conical shell is particularly interesting because it has a converging
geometry, so that the shell near its tip is necessarily “thick” even though the shell near its
base may be *“thin”. Further, the heat conduction equation is not separable for the conical
geometry, so that it is exceedingly difficult to obtain exact solutions. Here we have chosen
to model the shell with the theory of a Cosserat surface to determine the average (through-
the-thickness) temperature and temperature gradient in the shell directly, without resorting
to integration of three-dimensional results.

A number of problems of plates, circular cylindrical shells and spherical shells are
considered, and the solutions are compared with exact solutions to develop confidence in
the Cosserat theory. Within the context of this theory, it is usually assumed that constitutive
equations for shells have the same form as those for plates. Here it is shown that in order
to predict relatively accurate results in the thick-shell limit, it is necessary to generalize
these constitutive equations to include certain geometrical features of the shell. The
generalized constitutive equations are developed here in a consistent manner and tested in
the thick-shell limit. The tests include problems where the temperature fieids 6 and ¢ are
functions of time only, so that their Laplacian vanishes, as well as problems where they
are functions of space only, and their Laplacian does not vanish. In all cases, satisfactory
results are predicted even in the thick-shell limit.

Finally, a problem of transient heat conduction in a conical shell, which does not
have an exact solution, is solved analytically using the Cosserat theory. It is shown that
both the average temperature and temperature gradient have values near the tip which are
about 65% greater than those predicted by an approximate equivalent-cylinder solution.
Also, it is shown that the thermal bending moment produced by the average temperature
gradient is quite severe near the tip, and it attains its maximum value in a relatively short
time.
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